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SUMMARY 

The present paper provides an improved alternating direction implicit (ADI) technique as well as a high- 
order-accurate spline AD1 method for the numerical solution of steady two-dimensional incompressible 
viscous flow problems. The vorticity-stream function Navier-Stokes equations are considered in a general 
curvilinear coordinate system, which maps an arbitrary two-dimensional flow domain in the physical plane 
into a rectangle in the computational plane. The stream function equation is parabolized in time by means of a 
relaxation-like time derivative and the steady state solution is obtained by a time-marching AD1 method 
requiring to solve only 2 x 2 block-tridiagonal linear systems. The difference equations are written in 
incremental form; upwind differences are used for the incremental variables, for stability, whereas central 
differences approximate the non-incremental terms, for accuracy, so that, at convergence, the solution is free 
of numerical viscosity and second-order accurate. The high-order-accurate spline AD1 technique proceeds in 
the same manner; in addition, at the end of each two-sweep AD1 cycle, the solution is corrected by means of a 
fifth-order spline interpolating polynomial along each row and column of the computational grid, explicitly. 
The validity and the efficiency of the present methods are demonstrated by means of three test problems. 

KEY WORDS Numerical Solution Navier-Stokes Equations 2-D Steady, Laminar Flows AD1 Method Spline 
Interpolating Polynomials 

1. INTRODUCTION 

The present author has developed an alternating direction implicit (ADI) technique for the 
calculation of viscous, incompressible, steady flows past an arbitrary, two-dimensional body.' 
Such an approach used the vorticity-stream function Navier-Stokes equations in a system of 
general body-fitted coordinates. The governing equations were parabolized by adding a 
relaxation-like time derivative to the stream function equation, linearized in time and solved by 
means of the AD1 procedure of Douglas and Gunn.2 The method used second-order-accurate 
finite differences and, at convergence, provided a second-order-accurate approximation to  the 
steady flow of interest. The major limitation of the proposed AD1 approach was due to its use of 
central differences, which limited its applicability to low Reynolds number flows, or to separation- 
free high Reynolds number flows. A first-order-accurate method, using upwind differences for the 
convective terms in the equations, although feasible in principle, is not recommended, insofar as the 
effective Reynolds number of the numerical solution is lowered by the numerical viscosity 
introduced by the first-order-accurate upwind differences. A more stable, viscosity-free numerical 
technique is obtainable by using upwind differences for the convective terms, which are evaluated 
implicitly, and correcting them to second-order-accurate central differences, e~pl ic i t ly ,~ or, more 
simply, by employing the incremental (delta) form of the equations4 and using upwind differences 
for the incremental variables and central differences for the non-incremental variables. Both 
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approaches, which are shown here to coincide, have the desirable property of lowering the effective 
Reynolds number of the pseudo-transient problem by adding numerical viscosity, which is, 
however, completely removed from the solution as convergence is achieved. The second approach, 
using the incremental variables, is employed in this paper to provide an improved version of the 
AD1 technique given in Reference 1, which is more stable and capable of resolving high Reynolds 
number separated flows, while maintaining the second-order accuracy of the numerical-viscosity- 
free central differences, at convergence. 

Furthermore, following the idea of Rubin and Khosla,’ it is possible and very straightforward 
indeed to obtain a fourth-order-accurate spline AD1 method by means of a spline deferred- 
corrector a p p r ~ a c h . ~  The present paper also provides a simplified spline AD1 technique for the 
vorticity-stream function Navier-Stokes equations, which has all the features of the aforemen- 
tioned improved AD1 method. In particular, incremental variables are used and, in order to 
enhance the stability of the method, the convective terms are approximated by first-order-accurate 
upwind differences. At the end of each two-sweep AD1 cycle, the right-hand side (RHS) of the 
difference equations, which is already second-order accurate, is corrected by means of a spline 
interpolating procedure, explicitly, so that, at convergence, a fourth-order-accurate approximation 
to the steady flow of interest is obtained. 

The present paper develops as follows: in Section 2 the basic ideas of obtaining second- or 
fourth-order accuracy at convergence, while using first-order-accurate upwind differences to 
stabilize the transient phenomenon, are provided. The approach of Rubin and Khosla3*’ is briefly 
reviewed and the equivalent simpler and more elegant approach used in this study is presented. In 
Section 3 those ideas are applied to the AD1 numerical technique previously developed by the 
author,’ to provide an improved, more stable, second-order-accurate AD1 method as well as a 
fourth-order-accurate spline AD1 procedure. 

Finally, the results obtained by applying the present techniques to two model problems (viscous 
flow between two concentric circles and the classical driven cavity flow) as well as to a problem of 
practical interest (viscous flow in a channel of complex geometry) are presented in Section 4. 

2. THE DEFERRED-CORRECTOR APPROACH OF RUBIN AND KHOSLA 

Rubin and Khosla have presented their simplified spline techniq~e,~ as applied to the numerical 
solution of the steady-state Burgers’ equation, starting from the unsteady equation: 

u, + cu, = vu,, (1) 

The numerical procedure of Rubin and Khosla uses the following discrete form of equation (l), for 
positive values of the constant, c: 

u;” - U; + cA(uJ+‘  - uJ?:)kjh - BV(U;:: - 2 ~ ; + ’  + uj”2:)kjh2 
= c{A(u; - uy- - hm,?}k/h + vk{MJ - B(u,”+ - 2uJ + u;- l ) jh2}  (2) 

where the subscripts j, j - 1 and J + 1 indicate the spatial grid locations, the superscripts n and 
n + 1 indicate the old and new time levels, k is the time step, h is the spatial mesh width, m and M are 
the fourth-order-accurate spline approximations of u, and u,, and A and B are two arbitrary 
constants, necessary for the stability of the method; see Reference 5 for details. Notice that the high- 
order spline correction terms only appear at the old time level, known RHS of equation (2), so that 
at each time advancement only a tridiagonal system has to be solved (exactly as for the case of a 
low-order-accurate finite difference scheme), but that, at convergence, a fourth-order-accurate 
solution is obtained. Also notice that, if m and M are replaced with simple second-order-accurate 
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finite difference approximations, equation (2)  leads to the unconditionally stable KR scheme 
( A  = B = 1) of Reference 3. 

In the present paper an AD1 technique and a spline AD1 technique will be developed for 
the Navier-Stokes equations, which are based on these two techniques. However, an incremental 
(delta) formulation is preferred in this paper for its superior simplicity and elegance. For example, 
by writing equation (2)  in delta form, one obtains: 

(3) 
where Du = u"+' - u". Equation (3) actually coincides with equation (2) and will obviously 
produce the same numerical results, but it is simpler, more elegant and requires less computation 
effort. Notice, for example, that the RHS of equation (3) is a fourth-order-accurate discrete 
approximation of the steady Burgers' equation, which thus, at convergence (Du = 0 at all grid 
points), will be resolved with the desired level of accuracy. Moreover, the arbitrary constants A and 
B, which only multiply the incremental variables, are clearly seen not to influence the final steady- 
state solution. By comparing the simplicity of equation (3) with respect to equation (2), it is easy to 
understand the advantage of using the delta approach in complex numerical techniques for the 
Navier-Stokes equations. Obviously, also in equation (3), by replacing m and M with standard 
second-order-accurate finite differences, one obtains a scheme which has the stability of a 
windward difference scheme and the accuracy (at convergence) of a central difference scheme. In 
such a case, although unnecessary for stability, the use of values greater than one for A and B can 
further enhance the convergence of the numerical method. It remains to be said how rn and M are 
evaluated. After all n + 1 values have been obtained directly from equation (2), or from equation (3) 
and the definition of Du, the new time level m and M values are explicitly evaluated as 

Duj + cA(Duj - Duj-  ,)k/h - Bv(Duj+ - 2Duj + Duj-  l)k/hz = - ckmJ + vkMJ 

and 

where all K j  terms are easily obtained by solving the following tridiagonal system: 

(4)  

( 5 )  

see References 5 or 6 for details. It is noteworthy that, with respect to a standard second-order- 
accurate finite difference method, the simplified spline technique requires the solution of an 
additional tridiagonal system (equation (6)),  at each time level, whereas a standard spline 
technique6 would require the solution of a 2 x 2 block-tridiagonal system, at each time level. The 
convenience of the simplified approach is seen to increase when dealing with coupled systems of 
equations (e.g. with the Navier-Stokes equations). 

3. THE PRESENT AD1 AND SIMPLIFIED SPLINE AD1 METHODS 
FOR THE NAVIER-STOKES EQUATIONS 

The vorticity-stream function Navier-Stokes equations in a general system of curvilinear body- 
oriented coordinates (<, 9 )  are given7 as: 

and 
w, + ($,,cot - $cwa)/J - (amtt - 2Pwt, + yw,, + ow, + zwt)/J2Re = 0 

(a${< - 2P$t;,, + Y&,, + o$,+ T $ < ) / J 2  + CfJ = $* 

(7) 

(8) 

where a, P, y, (r and T are the metric coefficients and J is the Jacobian of the coordinate 
transformation, and a relaxation-like time derivative has been added to the stream function 
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equation, in order to deal with a parabolic system of equations.'.' For this reason, equations (7) 
and (8) are not the time-dependent Navier-Stokes equations, and in the present time-marching 
numerical techniques only the converged solutions will have physical meaning. 

Equations (7) and (8) are written in terms of the incremental variables, D$ = $"+' - $", D o  = 
on+ - on, and linearized in time by a Taylor's series expansion, which neglects terms of order D2, 
to give 

and 
D$fk  - D o  - ( M D $ ~ ~  + yD$,, + OD$, + zD~+h~)fJ' = SSSFE" (10) 

where SSVE" and SSSFE" are shorthand notations for steady-state vorticity (stream function) 
equation evaluated at  the ~t time level. It is noteworthy that the linearized equations (9) and (10) are 
fully implicit for the incremental variables except for the mixed derivatives, which are treated 
explicitly. Also, for more generality, two constants, A and B, can be introduced to multiply all 
convective and diffusive incremental terms, respectively. At this point, we are ready to solve 
equations (9) and (10) by means of two-sweep AD1 techniques, differing only in the level of accuracy 
used to approximate SSVE" and SSSFE". These AD1 methods, derived from that of Douglas and 

proceed as follows: at the first sweep, the q derivatives and the source-like terms in the LHS 
(left-hand side) of equations (9) and (10) are evaluated implicitly to give: 

(1 1) 
(12) 

DG/k  + ( D $ p S  - tjtDi3,)/J - (yDc3,, + aDc3,,)/J2Re = SSVE" 
D$fk - D G  - (yD$,, + aD$,)/J2 = SSSFE" 

where the N indicate that the solution is a first sweep (predictor-type) one and all the r derivatives, 
which are evaluated explicitly, give zero contribution in the incremental variables. At the second 
and final sweep, all the 5 derivatives and the source-like terms are evaluated implicitly, whereas the 
q derivatives are evaluated at the first sweep ( - )  level, explicitly. The resulting equations are not 
given here because, for computational convenience, they are replaced by the following ones, 
obtained by subtracting from them the first sweep equations (11) and (12): 

D o l k  + ($;Dor  - D$e;wi) fJ  - (aDose,  + z D o e ; ) / J 2 R e  = D&fk (13) 
(14) D $ f k  - D O  - (aD$<< i- T D $ ~ ) / J ~  = D$fk - Di3 

In equations (1 1)-(14) all the incremental terms are approximated with central differences (the 
second derivatives) and windward differences (the first derivatives) whereas the non-incremental 
terms are approximated with standard central differences (for the case of the AD1 method) or 
fourth-order-accurate spline approximations (for the case of the spline AD1 method). Therefore, for 
both techniques, a series of 2 x 2 block-tridiagonal systems is to be solved at each sweep of the AD1 
procedure, exactly as in the former AD1 technique due to the auth0r.l 

At the end of a complete AD1 cycle the solution is updated as: 

and, for the case of the AD1 method, the process is repeated until a satisfactory convergence is 
achieved. 

For the case of the spline ADI, however, in order to be able to evaluate the RHS in equations (1 1) 
and (12) with fourth-order accuracy (at convergence), it is necessary to obtain a fifth-order 
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interpolating polynomial approximating the new values of the stream function and of the vorticity 
along each row and column of the computational grid. This is done by solving two tridiagonal 
systems, formally identical to equation (6), for each row and for each column of grid points, which 
allow evaluation of the four matrices K ~ , b t ~ , ~ ,  K ~ , b q ~ , ~ ,  K o < i , j  and K ~ V , , ~ ;  from these, all the 
corresponding first and second derivatives, mt,hti, j, Mt,hti, j, etc., can then be evaluated explicitly, by 
means of expressions formally identical to equations (4) and (5). As far as the boundary conditions 
are concerned, for the case of equation (6), the first and last values of K are evaluated by linear or 
quadratic extrapolations from the neighbouring points. It is noteworthy that in the present spline 
AD1 technique, if an N x N mesh is used, at each AD1 sweep it is necessary to solve 2N 2 x 2 block- 
tridiagonal systems (equations (7)-( 10)) and 4 N  simple tridiagonal systems (equations of the type 
of equation (6)). A standard spline AD1 would require the solution of 2N 4 x 4 block-tridiagonal 
systems, i.e. a lot more computational work. Also, the additional work of the present simplified 
spline AD1 method with respect to the corresponding AD1 approach is minimal, considering the 
accuracy improvement it provides. 

The present approaches solve, at each sweep, the vorticity and the stream function equations as a 
coupled set on each row and column of the computational grid. For this reason it is possible, in the 
solution routine for each 2 x 2 block-tridiagonal system, to accommodate the double specification 
on the stream function at the boundary and to evaluate the vorticity at the wall, directly. For the 
case of the AD1 method, the boundary conditions are imposed exactly as in Reference 1, with the 
difference that, in the present case, the incremental approach is used also at the first sweep of the 
AD1 method. For the case of the spline AD1 method, the boundary conditions have to be imposed 
in such a way that, at convergence, they are to be fourth-order accurate, consistently with the 
numerical scheme. Dirichlet boundary conditions are obvious, insofar as, if o or 11/ are prescribed at 
the boundary, it is required that 

D$ = D& = D$ =DO = o (17) 

at the appropriate boundary grid points. A Neumann boundary condition for the stream function 
is slightly more complicated to deal with. Here only one example will be given, namely how to 
impose the boundary condition 11/,, = 0 at the lower wall boundary, in the first sweep of the spline 
AD1 method. By omitting the i subscript, for convenience, we have 

Owing to the extra unknown 3, (relative to a mirror image grid point), the steady-state stream 
function equation at the wall grid point is also employed, namely 

Equation (18) is then used to eliminate 3, from equation (19), which, written in delta form, 
(3,  = 0) becomes 

A h l  + A q z / h 2  = - 

Equation (20), coupled with the Dirichlet condition for the stream function (A$, = 0) allows a 
direct evaluation of the incremental stream function and vorticity at the boundary. Obviously all 
the K+q terms are known data at the old time level t” and Kt,hqo is evaluated from the neighbouring 
grid point values by linear or quadratic extrapolation. Several other boundary conditions are 
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possible; for example, using alternative expressions for rn and M ,  which do not introduce a mirror- 
image grid point, or two different expressions for m, which amounts to enforcing that the spline 
interpolating polynomial has a continuous first derivative through the boundary grid point. In the 
present study all the approaches described above have been used successfully. 

In Reference 1, an alternative, Crank-Nicolson-type, linearization and discretization in time of 
the governing equations was also used. The present techniques also have this option: in the 
computer programs all coefficients of the block-tridiagonal systems, to be solved at every sweep of 
the AD1 methods, contain a CR coefficient which can be either 1 or 05, to provide the implicit 
backward (see, e.g., equations (9) and (10)) or the Crank-Nicolson time discretization, directly. The 
Crank-Nicolson approach is obviously second-order accurate in time, but, since the present 
techniques only provide the steady-state solution, this is not necessarily an advantage. 
Furthermore, when using a Crank-Nicolson averaging, in order to obtain a correct value of the 
vorticity at the wall, the boundary conditions have to be inconsistent with the difference equations; 
that is, it is necessary to use an implicit backward time discretization of the stream function 
equation at all boundary points in the - sweep of the AD1 methods, in order to obtain the correct 
vorticity at the wall at convergence. This result is consistent with what has already been observed 
by Hill et aL9 and Briley and McDonald.'O For this reason, most of the results later presented in 
this paper have been obtained with the fully implicit time discretization of equations (9) and (10). 
However, in some calculations, the Crank-Nicolson time linearization (which obviously produces 
identical results at convergence) has been found to provide faster convergence rates for the same 
values of the time step, k. 

4. RESULTS 

Flow between two rotating circles 

The present methods have been developed in order to compute viscous steady flows past two- 
dimensional aerofoils, in connection with a method for generating a system of orthogonal 
curvilinear co-ordinates. The viscous flow between two concentric rotating circles has been 
considered as a model problem (somewhat simulating such a flow configuration), for which an 
exact solution is available for comparisons. The inner circle of radius equal to one is chosen to be 
stationary in order to test the no-slip, zero injection boundary conditions, usually given at the 
surface of a stationary aerofoil, whereas the outer circle rotates at such a speed that the vorticity on 
its boundary is also equal to one. A given vorticity has been imposed at the outer circle (of radius 
two), because, for external flow configurations, the outer boundary is usually chosen at a sufficient 
distance from the surface of the aerofoil, that a zero vorticity boundary condition is imposed. The 
physical flow field, divided into a system of equally spaced polar co-ordinates, has been 
transformed into a rectangle in the 5, q plane. All metric coefficients and the Jacobian have then 
been evaluated numerically with fourth-order-accurate spline interpolating polynomials, except 
for the mixed derivatives which are identically zero. It is noteworthy that, owing to the co-ordinate 
transformation, the flow field is 'opened up', so that periodic boundary conditions are needed in the 
5 direction. For more details and for an algorithm capable of solving periodic 2 x 2 block- 
tridiagonal systems, the reader is referred to Reference 1. 

The results obtained with both the AD1 and the spline AD1 methods for such a test problem are 
given in Figure 1, where the stream function at the centre of the annulus and the vorticity at the wall 
of the inner circle are plotted versus the inverse of the number of meshes (h), squared (for the AD1 
method), and to the fourth power (for the spline AD1 method), for several values of h. Two sets of 
spline AD1 results are given, corresponding to the use of linear and quadraticextrapolations for the 
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Figure 1. Numerical results for annulus flow 

K spline functions. All results are seen to tend to the exact solution as h tends to zero and with the 
correct second-order-accuracy and fourth-order-accuracy, respectively. Also, the higher order 
extrapolation is seen to produce more accurate results, as expected. However, the most interesting 
point to make is that, whereas the computation costs are almost equivalent (the convergence rate is 
almost the same for both approaches, probably due to the one-dimensional nature of the problem), 
the more accurate spline AD1 results, using a 10 x 10 mesh, have a discretization error up to five 
times smaller than that of the AD1 results, using a 24 x 24 mesh. 

The driven cavityflow 

The classical driven cavity problem" was also used as a test problem to verify the present 
numerical techniques. The Re = 100 case has been considered, using a uniform rather coarse 
14 x 14 mesh. The values of the vorticity at the centre of the moving wall of the cavity and the 
maximum value of the stream function are given in Table I for the AD1 method as well as for the 
spline AD1 method using either linear or quadratic extrapolation for the spline boundary 
conditions. A reference, accurate solution due to Rubin'' is also provided for easy comparison. 
The AD1 results are seen to be reasonably accurate and coincide with those obtained by Rubin," 
using the same spatial discretization and mesh (1 5 x 15 grid points). The spline AD1 results are 
considerably more accurate as far as the maximum value of the stream function is concerned. 
However, using a quadratic extrapolation for the spline coefficient K o  at the boundary is seen to 
produce a less accurate wall vorticity. This (apparently strange) result can be explained by 
considering that the vorticity and its second derivatives K w  vary very rapidly near the wall, so that 
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Table I. Driven cavity results 

Re = 100 UMTP *ma, 

AD1 - 8.916 - 0.0874 
Spline AD1 - 8.557 - 0.0941 

Spline AD1 - 9.380 - 0.0992 

Ref. solution" - 6.574 - 0.1034 

(linear extrap.) 

(quadr. extrap.) 

(14 x 14 mesh) 

Re = 1000 
AD1 (20 x 20 mesh) - 0.09 1 3 
AD1 (30 x 30 mesh) - 15.922 - 0.1055 
Ref. solution' ' - 14.890 - 0.1 17 

- 17.292 

using a quadratic extrapolation for Ko on a coarse mesh may actually lead to a larger truncation 
error than a formally less accurate linear extrapolation. It is noteworthy that the results in Table I 
have been obtained using both the backward and Crank-Nicolson time discretization and values 
of A and B equal to or greater than 1. Also, all of the Re = 100 results have been obtained within 2 
CPU minutes on an HP 1000/F minicomputer, thus verifying the efficiency of the proposed 
methods. 

The rather difficult case Re = 1000 has also been considered using the AD1 method and a 
uniform 20 x 20 mesh: although a converged solution has been obtained (an impossible task for the 
method of Reference 1) its accuracy is very poor insofar as the mesh employed is completely 
incapable of capturing the thin boundary layer near the walls of the cavity. Therefore, the following 
stretching has been employed which transforms a suitable non-uniform grid in the physical x, y 
plane into a uniform grid in the computational 5, q plane: ( z )  = 0.5 + 0.5 tanh[ C( 25- 1 )]/tanh(C) 

2q - 1 

It is noteworthy that by increasing the value of the arbitrary constant, C, more and more grid 
points are clustered near the walls of the cavity, whereas for a very small C a uniform grid is 
practically recovered. Here, numerical results have been obtained using both 20 x 20 and 30 x 30 
meshes and always C = 1.8. The results, given in Table I, are very reasonable (especially for the 
finer mesh) when compared to the reference solution of Rubin." Without any attempt to optimize 
the time step, using a backward Euler time discretization, a full convergence (average residual 
lop5) required about 2000 or 3000 iterations (k = 0.03 or 0.02) and 1 or 3 hours of CPU time, 
respectively. 

Flow in a channel of complex geometry 

The present methods were finally used to compute viscous laminar flow inside a channel of 
complex geometry. The problem was first proposed by Roache12 who numerically verified that, if 
the length of the channel is scaled proportionally to the Reynolds number of the flow, self similar 
flow conditions are obtained for very high Re values. Recently the same problem has been used as a 
numerical test-case for comparing the accuracy and efficiency of several numerical Navier-Stokes 
solvers by the IAHR working group on refined modelling of flows at its VIth meeting held in Rome 
(24-25 June, 1982). The geometry of the channel is given in Figure 2(a) for the Re = 10 case and 
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Figure 2(b) for the Re = 100 case. The lower wall of the channel is given analytically as 

Yl = SCtanh(2 - 30x/Re) - tanh 21 (22) 

Y,= 1 (23) 

x=O and x=Re/3 (24a, b) 

and its centreline as 

The inlet and outlet sections of the channel are finally given as 

so that, with reference to Figures 2(a) and (b), yf = [tanh ( - 8) - tanh (2)]/2 
In the present study, a system of orthogonal, curvilinear coordinates has been used to map the 

physical (x, y) flow domain into a rectangle in the (t, q) computational domain. A simple algebraic 
transformation, as given by Blottner and EllisI3 and described by Davis,14 has been used for 
simplicity as well as for taking full advantage of the shape of the channel, being prescribed 
analytically. The system of (q = constant) co-ordinate lines in the physical plane has been 
prescribed as follows: the line q = 0 coincides with the lower boundary (the wall) of the channel and 
the line q = 1 with its upper boundary (the symmetry line). All the other q = ( j  - l)Aq(j = 2,3,. . . , 
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N + 1, Aq = l/N) are given by the following expressions 

A family of (5  = constant) lines, orthogonal to the q = constant lines have then been obtained by 
integrating numerically with a fourth-order-accurate Runge-Kutta procedure, the following 
equation 

starting from prescribed points at the lower boundary of the channel. A few points are of interest: 
the distance between two successive q = constant lines in the physical plane has been chosen to 
increase at a constant rate ( q  = 1.1) startingfrom the lower boundary. In this way a finer resolution 
is obtained near the wall of the channel where viscous effects are more important. The distance 
between two successive < = constant lines along the x co-ordinate in the physical plane has also 
been chosen to increase at a constant rate (r = 1.054), starting from the point xi  = Re/15 (where the 
lower boundary of the channel has an inflexion point) in both x > xi  and x < xi directions. In this 
way a finer resolution is obtained in the region where a separation bubble is likely to develop. 
Finally, the ( = 0 and < = 1 lines in the physical plane have been chosen to coincide with the 
entrance and the exit of the channel, i.e. with the x = 0 and x = Re/3 lines, for convenience, and are 
not perfectly orthogonal to the q = constant lines. Therefore, the metric coefficients multiplying the 
mixed derivatives in the governing Navier-Stokes equations are not identically zero at all grid 
points and the accuracy of the spline AD1 method slightly deteriorates locally, insofar as the mixed 
derivatives are evaluated with standard second-order-accurate central differences. The curvilinear 
co-ordinates, generated as described above, are shown in Figure 3 for the Re = 10 case, together 

* = 1 ,  w = o  

- 0  

= o  

Q = 0, a v a n  - o 

Figure 3. Re = 10 computational grid and boundary conditions 
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Table 11. Channel flow AD1 and spline AD1 wall vorticity results 

SAD1 AD1 

i X Re=10 Re=100 Re=10 Re=100 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 

0 0  
0-1477 
02879 
04209 
0.5470 
06666 
0.7862 
0.9123 
1.0453 
1.1855 
1,3333 
1.4891 
1.6534 
1.8266 
2.0092 
2.2018 
24048 
2.6188 
2.8445 
3.0824 
3.3333 

3.0756 
2.5877 
2.1025 
09908 
0.1826 

- 0.0864 
-0.1314 
- 0.1 145 
- 0 1024 
- 0.1025 
- 0.0986 
- 00752 
- 0'0292 

00337 
01056 
0.1798 
02511 
0.3 147 
0.3661 
0.400 1 
04115 

3.0769 
2-5393 
1.9546 
1.1806 
04915 
00992 

- 00679 
- 0.1227 
- 01261 
- 0.0930 
- 0.0349 

0.043 1 
01281 
02158 
02966 
03747 
0.4399 
0.5020 
0.5507 
0.5945 
06415 

3.0113 
2.6612 
2.0040 
0.9675 
0.2148 

- 0.0837 
- 01365 
- 0.1 184 
- 0.1037 
- 0.1032 
- 0.0993 
- 0.0761 
- 0.0307 

003 13 
01024 
0.1762 
0.2473 
0.3114 
0.3636 
0.3986 
0.4336 

2.9970 
2.5620 
1.9564 
1.1820 
04999 
0.1075 

- 0.062 1 
- 0.1189 
- 01245 
- 0.090 1 
- 0.0327 

00482 
0 1307 
02212 
0.2985 
03790 
04396 
0.5058 
05470 
0.5997 
0.6525 
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with the boundary conditions used in the present calculations. After evaluating all the grid-point 
locations in the physical x,y plane (corresponding to a uniform Cartesian grid in the 
computational t, q plane), the metric coefficients a, /?, y, c, z, and the Jacobian of the transformation 
are evaluated at all internal grid points by means of central differences or fourth-order-accurate 
spline approximations in the AD1 and spline AD1 methods, respectively. At the boundary points 
the metric coefficients necessary to evaluate w from the stream function equation are obtained by 
linear or cubic extrapolation from the neighbouring gridpoints. The numerical solutions obtained 
for the Re = 10 and the Re = 100 cases by means of both present AD1 methods are given in Table I1 
as the values of the vorticity at the wall versus the xi locations of the { co-ordinate lines (the xi 
values corresponding to Re = 100 have to be multiplied by 10). For convenience, these results are 
also plotted in Figures 4 and 5 for the Re = 10 and Re = 100 cases, respectively; the results obtained 
by means of the spline AD1 method, using a coarser 10 x 10 mesh, are also given. All solutions are 
seen to coincide, for all practical purposes, and favourably compare with those obtained by means 
of several other methods (see, e.g., Reference 15). The 20 x 20 mesh spline AD1 solution is the most 
accurate and the other two solutions have comparable accuracy. For the two AD1 calculations, the 
minimum value of the vorticity at the wall is plotted versus the normalized number of iterations, to 
provide an idea of the convergence properties of the technique. A full convergence (to machine 
accuracy) has been obtained within about 130 and 150 iterations ( k  = 0.075 and k = 0.08) for the 
Re = 10 and Re = 100 cases, corresponding to less than 5 CPU minutes on the HP lOOO/F 
minicomputer. If one considers that a reasonable convergence is obtained in about 40 per cent of 
the total number ofiterations (see Figures 4 and 5), the efficiency of the present AD1 approach is self 
evident. The spline AD1 converged within 5 to 10 more iterations than the standard AD1 using the 
same number of grid points, because a stability limitation on k had to be satisfied for A = B = 1. 
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An optimization of the convergence, obtained by using different values of A and B, or by correcting 
the AD1 solution only after a given number of AD1 cycles, has not been pursued. However, by 
comparing the AD1 solutions with the 10 x 10 mesh spline AD1 solutions (which have comparable 
accuracy), it turns out that these required about 20 per cent less CPU time. 

5. CONCLUSIONS 

An improved AD1 numerical technique for the solution of incompressible viscous steady flows has 
been developed, together with a fourth-order-accurate spline AD1 method obtained by applying a 
spline deferred corrector approach to the present AD1 technique. The validity and efficiency of the 
present approaches have been demonstrated by their application to the numerical solution of three 
viscous flow problems. 

ACKNOWLEDGEMENTS 

This research was performed in part at the AFWAL/FIMM, in summer 1981, under Project 
Number 2307N603, whose AFWAL task engineer was Dr. W. L. Hankey and was also supported 
by the Italian National Research Council (CNR). The calculations of the flow in a channel of 
complex geometry have been performed in co-operation with V. Magi, whose care and thorough- 
ness were of invaluable help. The author is very grateful also to Dr. Hankey and Dr. Shang, for 
their interest and encouragement and to Prof. S. G. Rubin, for many precious discussions and 
helpful suggestions. 

LIST O F  SYMBOLS 

Arbitrary constants in the spline deferred corrector approach 
Arbitrary constant in the stretching equation (21) 
Constant in Burgers’ equation 
Incremental operator, applied to any variable 
Step size in the space variable 
Jacobian of the co-ordinate transformation 
Time step 
Spline coefficient, related to its second derivative 
Spline first derivative 
Spline second derivative 
Non-dimensional time 
Non-dimensional horizontal co-ordinate 
Non-dimensional vertical co-ordinate 
Dependent variable in Burgers’ equation 
Lower and upper boundaries of the channel 
Scale factors of the co-ordinate transformation 
Vertical transformed co-ordinate 
(Non-dimensional) kinematic viscosity in Burgers’ equation 
Longitudinal transformed co-ordinate 
Stream function 
Vorticity 
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Subscripts 

i, i + 1, i - 1 Longitudinal grid points 
j , j  + 1,j - 1 Vertical grid points 
t, x, y, (, q Partial derivative with respect to the indicated variable 

Superscripts 

n, -, n + 1 (Time) levels of the AD1 techniques 
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